OCR Maths S1

Topic Questions from Papers

Bivariate Data

Answers

1	(i)	A Points lie close to straight line	B1 B1	2	Valid reason, eg "linear". Not "strong correlation"
	(ii)	C Non-linear relationship	B1 B1	2	eg curve or quadratic

(Q1, Jan 2005)

2 (i)	$ \begin{array}{c cccc} 2 & 3 & 4 & 1 & 6 & 5 & 7 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \Sigma d^2 & = & 14 \\ r_s & = & 1 - \frac{6\Sigma d^2}{7(7^2 - 1)} \\ r_s & = & \frac{3}{4} \end{array} $	M1 M1 A1 M1 A1 5	Rank both sets consistently Find Σd^2 , dep ranks attempted. Allow arith errors $\Sigma d^2 = 14$ Use formula correctly, dep 2 nd M1 Answer ³ / ₄ or a.r.t. 0.750
(ii)	Rankings generally agree dep $r_s > 0.5$	B1f 1	Must have "agree" or "similar" etc, Not 'rankings well correlated' If $r_s < 0.5$, "generally don't agree": B1

(Q3, Jan 2005)

 $\Sigma - \mu$

3	(i)	$264 - \frac{90 \times 15}{5}$ or $\frac{264 - 5 \times 18 \times 3}{5}$	M1		Formula correctly used
3	(1)	$\frac{264 - \frac{90 \times 15}{5}}{1720 - \frac{90^2}{5}} \text{or} \frac{264 - 5 \times 18 \times 3}{1720 - 5 \times 18^2}$			Σ μ
		=-0.06 AG	A1		-0.06 correctly obtained
		$y - \frac{15}{5} = -0.06(x - \frac{90}{5})$	M1		or $a = {}^{15}/_5 - (-0.06) \times {}^{90}/_5$
		y = 4.08 - 0.06x	A1	4	Complete equation correct
	(ii)	Substitute $x = 20.5 \ (y = 2.85)$	M1		Allow 20 ($y = 2.88$) or 20.49
		Substitute $x = 19.5$ ($y = 2.91$)	M1		
			A1	3	Answer 0.06 or –0.06, c.w.d
		2.91 - 2.85 = 0.06			
	(iii)	-0.6, 0.5	B1		-0.6 correct
			B1	2	0.5 correct
	(iv)	1.5	B1		
		Calculated equation minimises this quantity	B1	2	Not "Low value for Σe^2 means points near line"
	(v)	$\bar{\mathbf{e}} = \Sigma e_i / 5$	M1		$\Sigma e_i/5$ used
	. ,	= 0	A1		Answer 0, cwd, cao
		$\sum e_i^2/5$ (- her \bar{e}) ²	M1		$\Sigma e_i^2/5$
		=0.3	A1	4	0.3 only, must see -0^2 or -0 in variance.
					ie: No working: $\bar{e} = 0$: M1A1; Var = 0.3: M1A0

(Q9, Jan 2005)

4 (i) Σd^2 = 14 $1 - \frac{6 \times their 14}{1 - \frac{6 \times their 14}{1$	M1 A1	Subtr & squ 5 pairs & add
$1 - \frac{1}{5 \times (25 - 1)}$ $= 0.3$	M1 A1 4	
(ii) Reverse rankings attempted 2 5 3 4 1	M1 A1 2	their S_{xy} M1dep = 0.3 A1 $\sqrt{(S_{xx}S_{yy})}$ 3 correct T & I to make $\Sigma d^2 = 40$: 2 mks or 0 mks
	6	

(Q1, June 2005)

5 (i) Correct subst in \geq two <i>S</i> formulae	M1	Any correct version
$\frac{14464.1 - \frac{265 \times 274.6}{5}}{\sqrt{\left(14176.54 - \frac{265^{2}}{5}\right)\left(15162.22 - \frac{274.6^{2}}{5}\right)}}$ $= -0.868 (3 \text{ sfs})$	M1 A1 3	or $\frac{14464.1 - 5 \times 53 \times 54.92}{\sqrt{(14176.54 - 5 \times 53^2)(15162.22 - 5 \times 54.92^2)}}$ or fully correct method with $(x - \overline{x})^2$ etc
(ii) No difference oe physicsandm	aPHstutor.ec	Ar slightly diff or more acc because of rounding
		Not just "more accurate"
(iii)Choose y on x stated	Blind	or implied, eg by S_{xy}/S_{xx} or $y = ax + b$
$\frac{14464.1 - \frac{265 \times 274.6}{5}}{14176.54 - \frac{265^{2}}{5}} \text{or} -0.682$	M1	If state x on y , but wking is y on x : B1 or their $\frac{-89.7}{131.54}$ seen or $\frac{14464.1-5\times53\times54.92}{14176.54-5\times53^2}$ or correct subst into a correct formula \underline{S}_{xy} \underline{S}_{xx}
$y - \frac{274.6}{5} = (\text{their} - 0.682)(x - \frac{265}{5})$ $y = 91(.1) - 0.68(2) x$ $49.9 \text{ (3sfs) or 50}$	M1ind A1 5	or $a = {}^{274.6}/_5$ - (their -0.682) x ${}^{265}/_5$ Simplif to 3 terms. Coeffs to ≥ 2 sfs
` ′		Use of x on y: equiv M mks as above
	9	

(Q4, June 2005)

6 (i)	Negative, because (grad or coeff of x in 1 st equn or x -value or reg coeff or B or -0.6) is negative	B1	1	Neg because x incr & y decr
(ii)	$x = -1.6 \times 7.0 + 21$ x = 9.8	M1 A1	2	Sub <i>y</i> =7.0 in 2 nd eqn. Allow 1 sign error If sub in both must choose 2nd
(iii)	$y = -0.6(-1.6y + 21) + 13$ or similar $\bar{x} = 5$, $\bar{y} = 10$	M1 A1A1	3	Obtain correct eqn in 1 variable. Allow 1 num'l error Allow without bars
Total		6		

(Q1, June 2006)

physicsandmathstutor.com

7 (ia)	Ranks: 2 4 7 5 3 1 6 6 4 1 3 5 7 2 7 1 6 3 2 5 4 1 7 2 5 6 3 4 $\sum d^2$ (= 60)	M1 A1 M1		≥ 5 ranks correct in each set all correct dep ranks attempted even if opp orders, allow arith errors
	$r_{\rm s} = 1 - \frac{6 \times 60}{7 \times 48}$ = $-\frac{1}{14}$ or -0.071 (3 dps)	M1	5	Correct formula with $n = 7$, dep 2^{nd} M1 calc r for ranks: $S_{xx} = S_{yy} = 140 - 28^2 / 7. \qquad S_{xy} = 110 - 28^2 / 7$ $(= 28) \qquad (= -2)$ corr subst in one corr S (any version):M1 corr subst in $r = S_{xy} / \sqrt{(S_{xx}S_{yy})}$:M1 -0.07 without wking: M1A1M2A0
(b)	Little (or no) connection (agreement, rel'nship) between dist and commission Allow disagreement	B1ft	1	No mks unless $ r_s \le 1$ ft their r_s Must refer to context. Not "little corr'n between dist and com" not "strong disagreement"
(c)	Unchanged. No change in rank	B1B1	2	Ignore other comment
(ii)(a)	 = –1	B1	1	indep
(b)	Close to -1 or, eg ≈ -0.9	B1		not referring to "corr'n" rather than r allow "neg", not neg corr'n or neg skew
Total		10		

(Q6, June 2006)

8 (i)	$x = 20; y = 11; x^2 = 96; y^2 = 31; xy$			
	=52)	B1		
	$S_{xx} = 16$ or 3.2	B1		
	$S_{yy} = 6.8$ or 1.36	B1		
	$S_{xy} = 8$ or 1.6	M1		$dep -1 \le r \le 1$
	r = 8 or <u>1.6</u>			ft their S's $(S_{xx} & S_{yy} + ve)$ for M1 only
	$\sqrt{(16x6.8)}$ $\sqrt{(3.2x1.36)}$	A1	5	•
	= 0.767 (3 sfs)			
ii	Small sample oe	B1f	1	
Total		6		

(Q2, Jan 2007)

9 (i)	$\frac{2685 - \frac{140 \times 106.8}{8}}{3500 - \frac{140^2}{8}} \text{or } \frac{2685 - }{8 \times 17.5 \times 13.35}$	M1	Correct sub in any correct formula for b (incl. $(x - \overline{x})$ etc)
	$= {}^{136}/_{175}$ or 0.777 (3 sfs)	A1	
	$y - {}^{106.8}/_8 = 0.777(x - {}^{140}/_8)$	M1	or $a = {}^{106.8}/{}_{8} - 0.777x^{140}/{}_{8}$ ft b for M1
	y=0.78x-0.25 or better or physics and ma	th&tutor.ec	≥ 2 sfs sufficient for coeffs
ii	$0.78 \times 12 - 0.25$	M1	M1: ft their equn
	= 9.1 (2 sfs)	A1f 2	A1: dep const term in equn
iiia	Reliable	B1	Just "reliable" for both: B1
b	Unreliable because extrapolating oe	B1 2	
Total		8	

(Q5, Jan 2007)

3500 8x17 5

	UK Fr Ru Po Ca 1 2 3 4 5 or 5 4 3 2 1 4 3 1 5 2 2 3 5 1 4 Σd^2 (= 24) $r_s = 1 - \frac{6 \times \text{"24"}}{5 \times (5^2 - 1)}$ = $-\frac{1}{5}$ or -0.2	M1 A1 M1 M1 A1 5	Co	RCFUP 35214 $3145212345 54321 added. Dep ranks \frac{43-15^2/5}{(55-15^2/5)(55-15^2/5)} or sub in \geq 2 S's M1 correct: M1$
Total		5		

(Q2, June 2007)

11 (i)	$r = \frac{212 - \frac{24 \times 39}{5}}{\sqrt{(130 - \frac{24^2}{5})(361 - \frac{39^2}{5})}}$	B2 2	2	$\frac{24.8}{\sqrt{14.8\times56.8}} \text{ or } \frac{24.8}{\sqrt{840.64}} \text{ or } \frac{24.8}{3.85\times7.54} \text{ or } \frac{24.8}{29}$ B2 for correct subst in r B1 for correct subst in any S
ii	R = 0.7 or (B)	B1		(A) and (B) true: B0B0
	Definition of r_s is PMCC for ranks	B1 2	2	dep 1 st B1
iii	$\begin{vmatrix} r = 0.855 \\ r_s = 0.7 \end{vmatrix}$	B1		
	$r_s = 0.7$	B1 2	2	or "unchanged": B1B1
				Interchanged: B1
Total		6		

(Q3, Jan 2008)

12 (ia)	8736.9 - 202×245.3	N/ 1		correct sub in any correct formula for b
	7 1030.24	M1		eg 236.8921
	${7300 - \frac{202^2}{7}}$ or ${1470.86}$			210.1249
	7300			
	= 1.127 $(= 1.13 AG)$	A1	2	must see 1.127; 1.127 alone: M1A1
(b)	$y - \frac{245.3}{7} = 1.13(x - \frac{202}{7})$	M1		or $a = \frac{245.3}{7} - 1.13 \times \frac{202}{7}$
(b)	1			,
	y = 1.1x + 2.5 (or 2.4) or $y = 1.13x + 2.43$	A1	2	2 sfs suff.
				(exact: $y = 1.127399x + 2.50934$)
(ii)(a)	$(1.1() \times 30 + 2.5()) = 35.5 \text{ to } 36.5$	B1f	1	
(b)	$(1.1() \times 100 + 2.5()) = 112.4 \text{ to } 115.6$	B1f	1	
(iii)	(a) Reliable	B1		Both reliable: B1 (a) more reliable than (b) B1
				because (a) within data
	(b) Unreliable because extrapolated	B1	2	or (b) outside data B1
	(c) communication of the second of the secon		_	Ignore extras
Total		8		6

(Q2, Jan 2009)

13 (i)	Because growth may depend on pH oe	B1 1	In context. Not <i>x</i> is controlled or indep
	or expt is investigating if y depends on x		
ii	$S_{xy} = 17082.5 - 66.5 \times 1935/8 (= 997.8125)$		
	$S_{xx} = 558.75 - 66.5^2/8$ (= 5.96875)		
	$b = S_{xy}/S_{xx}$	M1	Correct sub into any correct b formula
	= 167 (3 sfs)	A1	
	y - 1935/8 = "167"(x - 66.5/8)	M1	or <i>a</i> =1935/8 – "167" x 66.5/8
	y = -1150 + 167x	A1 4	cao NB 3 sfs
iii	$y = -1150 + 167 \times 7$	M1	ft their eqn for M1 only
	= 19 to 23	A1 2	
iv	No (or little) relationship or correlation	B1 1	or weak or small corr'n.
	<u>-</u>		Not "agreement"
va	Reliable as <i>r</i> high oe	B1 1	Allow without "interpolation" oe,
			but must include <i>r</i> high
b	Unreliable as extrapolation oe	B1 1	or unreliable as gives a neg value
vi	Unreliable (or No) because <i>r</i> near 0	B1 1	or No because Q values vary widely
	or because little (or no or small) corr'n		for $pH = 8.5$
	(or rel'n)		•
Total		11	

(Q9, Jan 2008)

physicsandmathstutor.com

14 (i)	1 2 3 4 5 or 5 4 3 2 1	M1	attempt ranks
	3 5 4 1 2 3 1 2 5 3 .	A1	correct ranks $tor.Sorm_{xx} = 55 - 15^2 /_5 (=10) \text{ or } S_{yy} = 39 - 15^2 /_5 (=-6)$ $tor.Sorm_{xy} = 55 - 15^2 /_5 (=10) \text{ or } S_{yy} = 39 - 15^2 /_5 (=-6)$
	$\sum d^2 = 32$ physicsan	omathstr	$tS_{xx}S_{yy} = 55 - 15^2 /_5 (=10) \text{ or } S_{yy} = 39 - 15^2 /_5 (=-6)$
	$1 - 6 \times 32^{\circ} / 5(25 - 1)$	M1dep	$^{-6}/\sqrt{(10\times10)}$
	= - 0.6	A1 5	
(ii)	1 & 3	B1ind	ft if -1 < (i) < -0.9, ans 1 & 2
	Largest neg $r_{\rm s}$		NOT: furthest from 0 or closest to ± 1
	or large neg r_s or strong neg corr'n		little corr'n
	or close(st) to -1		most disagreement
	or lowest r_s	B1dep	
		2	
Total		7	

(Q4, Jan 2009)

15	first two d 's = ± 1	B1	S_{xx} or $S_{yy} = 28$ B1
	Σd^2 attempted (= 2)	M1	$S_{xy} = 27$ B1
	1- <u>6 × "2"</u>	M1dep	$S_{xy}/\sqrt{(S_{xx}S_{yy})}$ M1 dep B1
	$7(7^2-1)$	_	_
	$= \frac{27}{28}$ or 0.964 (3 sfs)	A1	1234567 & 1276543 (ans $^2/_7$): MR, lose A1
Total		4	

(Q2, June 2009)

	B:Diag or expl based on r=1=>pts on st line =>r(s)=1	B1 B1	3	Diag or expl based on $r(s) \neq 1 = >pts$ not on st line $= >r \neq 1$
				r=1=>pts on st line&r(s) \neq 1=>pts not on st line B1B1 r=1=>r(s)=1 B2
(b)	$\overline{y} = 2.4 \times 4.5 + 3.7$ = 14.5 4.5 = 0.4 × "14.5" - c c = 1.3	M1 A1 M1 A1	4	Attempt to sub expression for y x=0.96x+1.48-c oe sub x=4.5 and solve c=1.3
	a'=x-b'y:-14.5 M1A1; then a'=4.5-0.4x14.5=-1.3 M1A1			14.5 M1A1.(y-3.7)/2.4=0.4y-c and sub14.5 M1 c=1.3 A1
Total		[7]	

(Q6, Jan 2010)

17 (i)	x independent or controlled or changed Value of y was measured for each x x not dependent	B1 1	Allow Water affects yield, or yield is dependent or yield not control water supply Not just <i>y</i> is dependent Not <i>x</i> goes up in equal intervals Not <i>x</i> is fixed
ii	(line given by) minimum sum of squs	B1 B1 2	B1 for "minimum" or "least squares" with inadequate or no explanation
iii	$S_{xx} = 17.5$ or 2.92 $S_{yy} = 41.3$ or 6.89 $S_{xy} = 25$ or 4.17 $r = \frac{S_{xy}}{\sqrt{(S_{xx}S_{yy})}}$ = 0.930 (3 sf)	B1 M1 A1 3	or $91 - 21^2/_6$ or $394 - 46^2/_6$ B1 for any one or $186 - \frac{21 \times 46}{_6}$ dep B1 0.929 or 0.93 with or without wking B1M1A0 SC incorrect n : max B1M1A0
iv	Near 1 or lg, high, strong, good corr'n or relnship oe Close to st line or line good fit	B1ft B1 2	r small: allow little (or no) corr'n oe Not line accurate. Not fits trend
Total		8	

(Q3, June 2009)

18 (i)	$S_{hm} = 0.2412$		Allow x or ÷ 5
	$S_{hh} = 0.10992$		
	$S_{mm} = 27.212$	B1	any one S correct
	$r = \underline{S_{hm}}$	M1	ft their Ss
	$\sqrt{(S_{hh}S_{mm})}$		
	= 0.139 (3 sfs)	A1 3	
(ii)	Small, low or not close to 1 or close	B1 ft	1 st B1 about value of <i>r</i>
	to 0 oe		2 nd B1 about diag
	pts not close to line oe	B1	
(iii)	none or unchanged or "0.139" oe	B1 1	
(iv)	Larger oe	B1 1	
Total		[7]	

(Q3, Jan 2010)

19 (i)	Opposite orders or ranks or scores or results or marks $r_s = -1$	B1 1	or reversed, or backwards, or inverse or as one increases the other decreases Needs reason AND value
ii	Attempt Σd^2 (= 6) $1 - \frac{6 \times \Sigma d^2}{3(3^2 - 1)}$ $= -\frac{1}{2} \text{ oe}$	M1 M1 A1 3	dep 1 st M1 Allow use wrong table for M1M1
iii	3! or ${}^{3}P_{3}$ or 6 1 ÷ their '6' $\frac{1}{6}$ oe eg $\frac{6}{36}$	M1 M1 A1 3	r attempt list possible orders of 1,2,3 (\geq 3 orders) 2^{nd} M1 for fully correct method only or $\frac{1}{3} \times \frac{1}{2} (\times 1)$: M1M1
Total		7	

(Q2, June 2010)

00.00			
20 (i)	If x is contr (or indep) or y depend't,		Allow <i>x</i> increases constantly, is predetermined,
	use y on x	B1	you choose x, you set x, x is fixed, x is chosen
	-		
	If neither variable contr'd (or indep)		Allow <i>y</i> not controlled AND want est <i>y</i> from <i>x</i>
	AND want est y from x : use y on x	B1 2	Time way new constrained the value could be a financial way.
	The want est y from x. use y on x	D1 Z	Ignore incorrect comments
	2		
iia	$S_{xx} = 510000 - \frac{1800^2}{9}$ (= 150000)		or $\frac{510000}{9} - 200^2$ (= 16666.7)
	7		or 4080 200×1.6 (-122.22)
	$S_{xy} = 4080 - \frac{1800 \times 14.4}{9}$ (= 1200)	M1	or $\frac{4080}{9}$ - 200×1.6 (= 133.33)
			M1 for either <i>S</i>
	$b = \frac{1200'}{150000'} \tag{= 0.008}$	M1	$b = \frac{133.33'}{166667'}$ dep correct expressions both S's
	150000		16666.7
	$y - \frac{14.4}{9} = 0.008(x - \frac{1800}{9})$	M1	or $a = \frac{14.4}{9} - 0.008 \times \frac{1800}{9} (=0)$
	y = 0.000(x = 9)		Must be all correct for M1
	0.000 (0)		Widst be all collect for MT
	y = 0.008x (+ 0)	Al 4	thatutar aam
iib	y = 0.008x (+ 0) 312.5 or 313 physic	Blitt	ft their equn in (iia)
iic	-0.4	B1ft 1	ft their equn in (iia)
iid	Contraction oe	B1(ft)	or length decreased, shorter, pushed in, shrunk,
IIG.	Contraction oc	DI(II)	•
			smaller
	Unreliable because extrapolated oe	B1 2	or not in the range of x
	_		or not in range of previous results
Total		10	<u> </u>
_ =			

(Q3, June 2010)

21 (i)	7351.12- <u>86.6×943.8</u> 	M1 M1		1^{st} M1 for correct subst in any correct S formula 2^{nd} M1 for all correct subst'n in any correct r formula
	$\sqrt{(658.76 - \frac{86.6^2}{12})(83663 - \frac{943.8^2}{12})}$ or $\frac{340.03}{\sqrt{33.80 \times 9433}}$	IVII		2 MT for all correct subst it in any correct r formula
	= 0.9564 or 0.956 or 0.96	A1 3	Must see at least 2 sfs	0.96 or correct better, no working: M1M1A1
				eg 0.958 → 0.96 with correct working M1M1A0 without working: M0M0A0
ii	Strong (or high or good or close etc) relationship (or corr'n or link) between amount spent on advert & profit	B1 1	Allow Almost complete relationship or Very positive corr'n or Very reliable relationship or Near perfect relationship between spend on advert & profit oe, in context physicsandmathstutor.com	Must state or imply "strong" or "good" or equiv & in context but NOT Strong <i>agreement</i> between etc NOT High spend on ads produces high profits NOT The more spent on adverts, the higher the profit NOT Positive corr'n between spend on ads & profits NOT There is a relationship between spend on ads & profit NOT There is a great relationship between etc NOT ans involving "proportion(al)" Ignore irrelevant or incorrect If incorrect $r (< 0.9)$ in (i), no ft for ans "weak rel'nship" here;
iii				but correct ans here scores B1 even if inconsistent with their r Allow without context
	Relationship may not continue	В1	Can't extrapolate Any indication that pattern may not continue Must state or imply referring to future	Examples: Can't predict future; Things can change May be recession ahead; Economic situation may change Cost of advertising may increase If spend too much on ads, profit may be reduced as a result Advertising may not be as successful in the future Item may go out of fashion NOT Spending on adverts may not bring high profits
	Corr'n not imply causation	B1 2	Increase in profit may not be due to increase in spend on advertising. Variables may be increasing separately	NOT Spending on adverts may not bring higher profits NOT Spending more on adverts may not bring higher profits (Since these just restate the question) NOT More money spent on ads will not affect profit Both variables may be affected by a third Other factors may affect profits Advertising not the sole factor affecting profits Two different categories of reason needed, as given above. Two reasons which both fall under the same category: only B1 NOT Because corr'n not equal to 1
iv	$b = \frac{7351.12 - \frac{86.6 \times 943.8}{12}}{658.76 - \frac{86.6^2}{12}}$	M1	or $\frac{S_{XY}}{Sxx}$	ft values of S_{xy} & S_{xx} if clearly shown in (i)
	= 15.9788 or 16.0 $y - \frac{943.8}{12} = \text{``16.0''}(x - \frac{86.6}{12})$	A1 M1	or $a = \frac{943.8}{12} - \text{``16.0''} \times \frac{86.6}{12}$	
	y = 16x - 37 or better	A1 4	(y = 15.9788x - 36.664)	Coeffs not nec'y rounded, but would round to 16 & 37 These marks can be earned in (v) if not contradicted in (iv)
				If x on y line found: M-marks only $(x = 2.71 + 0.0572y)$
v	"16" × 7.4 – "37" 81400 to 81750	M1 A1f 2	81.4 thousand to 81.7 thousand: M1A1 but 81.4 to 81.7 alone: M1A0	"16" × 7400 – "37": M0A0 ft their (iv)
Total		12	cat of the off, alone.	
				·

(Q3, Jan 2011)

22 (i)	EDCBA	B1 1	A 5 B 4 C 3 D 2 E 1	NOT just 5, 4, 3, 2, 1
iia	$1 - \frac{6\Sigma d^2}{5(5^2 - 1)} = 0.9$ $1 - \frac{6\times \Sigma d^2}{5\times 24} = 0.9 \text{ or } 0.1 = \frac{6\times \Sigma d^2}{5\times 24}$ $(\Sigma d^2 = 2 \text{ AG})$	M1 A1 2	One correct step or better & nothing incorrect for A1	$1 - \frac{6 \times 2}{5(5^2 - 1)}$ $= 1 - \frac{6 \times 2}{5 \times 24} \text{ or } 1 - \frac{12}{5 \times (5^2 - 1)} \text{ One correct step or better \& nothing incorrect for A1}$ $(= 0.9 \text{ AG})$
b	d ² : 0, 0, 0, 1, 1 any order BACDE or similar	M1 A1 2	or d: 0, 0, 0, 1, -1 any order Any two adjacent dogs interchanged	May not be seen If clearly comparing second race with third; DECBA or similar: B1, but must be clear
Total		5		

(Q8, Jan 2011)

physicsandmathstutor.com

22 (ic)	$3247 - \frac{251 \times 65}{5}$		M1 for correct subst in any correct S formula	
23 (ia)	$\frac{\frac{324/-\frac{255}{5}}{\sqrt{(14323-\frac{251^2}{5})(855-\frac{65^2}{5})}}}{\sqrt{(14323-\frac{251^2}{5})(855-\frac{65^2}{5})}} \text{or } \frac{-16}{\sqrt{1722.8\times10}}$	M2	M2 for correct subst'n in any correct r formula	or $\frac{-80}{\sqrt{8614\times50}}$
	= -0.1219	A1 3	Must see at least 4 sfs	Allow -0.1218
Ь	Poor/no/little/weak/not strong corr'n or rel'nship or link between income & distance oe	B1 1	or slight neg/weak corr'n (oe) between income & distance In context, ie any comment on income & distance, even if incorrect	eg, Poor neg corr'n, so higher distance, lower income No rel'nship. Low income doesn't cause low distance NOT "Not proportional" NOT "negative corr'n" No recovery of this mark in (ii)
С	No effect or -0.122 oe	B1 1	eg "Nothing" or "None" oe	Ignore other NOT "Little effect" NOT "Not much effect"
ii	r close to 0, or small, or poor corr'n oe or $r = -0.122$	В1	or Weak/no corr'n or poor rel'nship oe or No evidence to link sales & distance	or because small sample Ignore other
	Unreliable	B1dep 2	Condone "innacurate" or "incorrect" or "less reliable" or "not that reliable" "The data is unreliable" Must have correct reason	Allow: "Unreliable because pts do not fit a st line" "Unreliable because pts are scattered" "Unreliable because not strong neg" "Unreliable because r not close to -1" "Unreliable because r smaller than (–)0.7"
				NOT "Unreliable because extrapolated": B0B0 but "Unreliable because extrapolated and poor corr'n": B1B1
Total		7		

(Q1, June 2011)

physicsandmathstutor.com

24	Attempt ranks 4 1 2 3 or 1 2 3 4 or 1 2 3 4 oe	M1	Ignore labels of rows or columns	
	2134 1342 1423	A1	No ranks seen, $d = (0), \pm 1, \pm 1, \pm 2$, or $d^2 = (0), 1, 1, 4$ any order: M1A1	No wking, $\Sigma d^2 = 6$: M1A1M1
	Σd^2 attempted (or 6)	M1	NOT $(\Sigma d)^2$	No wking, $\Sigma d^2 = \text{eg } 14$: M0A0M0, but can gain 3^{rd} M1
	$1 - \frac{6\Sigma d^2}{4(4^2 - 1)}$	M1		No wking, ans $\frac{2}{5}$: Full mks
	$=\frac{2}{5}$ oe	A1 5		Allow both sets of ranks reversed
				NB incorrect method: 2 3 4 1 2 1 3 4 OR $d = (0), \pm 2, \pm 1, \pm 3$ any order OR $d^2 = (0), 4, 1, 9$ any order (leading to $\Sigma d^2 = 14$ and $r_s = -\frac{2}{5}$):
				M0A0M1M1A0
Total		5		

(Q2, June 2011)

25 (i)	x	B1 1	Ignore explanations. "Neither" or "Both": B0	
ii	Diag showing vertical differences only	В1	Allow description instead of diag: "Distances from pts to line // to y-axis" oe	Allow ≥ one line, from a point to the line
	State that sum of squares of these is min oe	B1 2	dep vert or horiz lines (not both) drawn or described	Must have Min, Squares, Distances & Sum
iii	-1	B1	Not approx -1	Allow eg:
	Ranks opposite or reversed or <u>perfect</u> neg corr'n between <u>ranks</u> oe	B1dep 2	As x increases, y decreases	-1 because neg corr'n so ranks must be reversed
				Ignore other
				NOT neg corr'n or strong neg rel'nship oe
				NOT comment about "disagreement" or
				"agreement"
iv	"Negative"		physicsanamathstutor.com	Any implication of Negative, except
			or any negative value > -1	NOT "Negative gradient" and
	or "Not -1"	B1 1	or "Close to -1"	NOT "-1" given as the value of r
Total		6		

(Q7, June 2011)

26	(i)		because values (or depths) are fixed (or controlled or chosen or predetermined or manipulated or given oe) because they can be changed or it is changed or because it is not measured ie not "read off" oe or because we change the values ourselves	B1 [1]	Allow "because it goes up in intervals" or "because it is taken at set intervals" Ignore all else NB "x is changed" B1, but "x changes" B0	NOT: x, as values are constant x, as y depends on x x as % sand depends on depth Depth, as not affected by % sand content x, as it is not dependent x, because y is measured x, because it changes y, which is the depth and this is controlled
	(ii)		$S_{xx} = 7344 - \frac{216^2}{9} \qquad (= 2160)$ $S_{yy} = 30595 - \frac{512.4^2}{9} \qquad (= 1422.36)$ $S_{xy} = 10674 - \frac{216\times512.4}{9} \qquad (= -1623.6)$ $r = \frac{\text{"-1623.6"}}{\sqrt{\text{"2160"}\times\text{"1422.36"}}}$ $= -0.926 \text{ (3 sfs)}$	M1 physics M1 A1 [3]	correct subst in any S formula sandmathstutor.com correct subst in all Ss & in r	
	(iii)	(a)	$b = \frac{\text{"-}1623.6\text{"}}{\text{"2}160\text{"}} \text{or } -0.75 \text{ or } -\frac{451}{600}$ $y - \frac{512.4}{9} = \text{"-}0.75\text{"}(x - \frac{216}{9})$ $y = -0.75x + 75(.0) (2 \text{ sf})$ or $y = -\frac{451}{600}x + \frac{5623}{75}$ $r \text{ close to } -1 \text{ (or high or strong), } r \text{ close to } 1$	M1 M1 A1 [3] B1	ft S_{xy} & S_{xx} from (ii) or $a = \frac{512.4}{9} - 0.75 \times (-\frac{216}{9})$ or $\frac{5623}{75}$ 2 sf is enough Allow $y = -0.75x + (-75)$ Allow strong or good or high corr'n or rel'nship etc	If ans to (i) is y , & x on y found here: $b' = \frac{"-1623.6"}{"1422.36"} \qquad (=-1.14) \qquad M1$ $x - \frac{216}{9} = "-1.14" (y - \frac{512.4}{9}) \qquad M1$ $x = -1.14y + 89(.0) \qquad A1$ If ans to (i) is x , but x on y found here: $B1 \text{ only for } x = -1.14y + 89(.0)$ or strong neg corr'n. Award this mark even if comment linked to 100 instead of linked to 25. $BUT: "r \text{ close to } -1, \text{ so unreliable": B0 Can still score next marks if mention "within" and "outside range"}$
			25 within range of data oe, so reliable 100 outside range of data oe, so unreliable Must give reasons Allow "accurate" instead of "reliable"	B1 B1 [3]	or so more reliable or so less reliable If (ii) $ r < 0.7$: poor corr'n oe B1f 25 unreliable B1f 100 unreliable B1f	or 100 gives neg %age "Reliable because r near –1" B1B0B0 "Small sample so unreliable" B0B0B0 Ignore all else

(Q2, Jan 2012)

27	(a)	3 5 1 4 2 3 1 5 2 4 1 4 3 5 2 5 2 3 1 4	M1 A1	Attempt ranks for both variables Correct ranks May be implied by $\Sigma d^2 = 10$	If use alphabetical order for one or both sets of ranks, M0A0. eg if 1, 2, 3, 4, 5, seen or $\Sigma d^2 = 14$ or 16, check carefully. But can score $2^{\rm nd}$ & $3^{\rm rd}$ M1s. Also see example below
		Σd^2 attempted (= 10)	M1	S_{xx} or $S_{yy} = 55 - \frac{15^2}{5}$ (=10) or $S_{xy} = 50 - \frac{15^2}{5}$ (=5)	
		$r_s = 1 - \frac{6\Sigma d^2}{5(5^2 - 1)}$ dep \geq M1 gained	M1	$\frac{5}{\sqrt{10\times10}}$	A = 1, B = 2 etc eg 2 4 1 5 3 4 2 3 5 1 Max M0A0M1M1A0
		= 0.5	A1 [5]		Max MOADMINIAO
	(b)	$n(n^2 - 1)$ greater or increases or becomes $(n+1)((n+1)^2 - 1)$	B1ind	or "denom increases" or "÷ by larger number" or "fraction decreases" or "value taken from 1 decreases" oe	Allow increases to 6×35 NOT just "n increases"
		Σd^2 unchanged (or not increase) Allow d^2 unchanged	Blind	or $d = 0$ or $d^2 = 0$ or the difference is 0	NOT $n(n^2 - 1)$ changes NOT "difference is unchanged"
		r_s greater	B1	$dep \ge B1$ or no explanation	Use of incorrect formula can score max B1B1B0 (B0 for r_s greater)
			[3]	"Little diff between rankings so r_s same" or "rankings unchanged" B0B0B0	"Increases because more agreement" B1 only

(Q4, Jan 2012)

physicsandmathstutor.com

		_ 2 2		1		
28	(i)	$\Sigma x = 1366$ $\Sigma y = 17.6$ $\Sigma x^2 = 374460$ $\Sigma y^2 = 62.82$ $\Sigma xy = 4784.8$	B1	any three correct; may be implied by 2 S's		$_{cx} = \Sigma (x - \bar{x})^2$ etc: 273.2, $\bar{y} = \frac{17.6}{5}$ or 3.52, either:B1
		$S_{xx} = 374460 - \frac{1366^2}{5} \qquad \text{or } 1268.8$			$(-23.2)^2 + (-$	$(-3.2)^2 + (-9.2)^2 + 16.8^2 + 18.8^2$
		$S_{yy} = 62.82 - \frac{17.6^2}{5}$ or 0.868			$0.68^2 + 0.18^2$	$+(-0.32)^2+(-0.02)^2+(-0.52)^2$
		$S_{xy} = 4784.8 - \frac{1366 \times 17.6}{5}$ or -23.52	M1	correct sub in any correct S formula, ft Σs , \overline{x} , \overline{y}	(-23.2)×0.68 + (-3	3.2)×0.18 + (-9.2)×(-0.32) +16.8×(-0.02) +18.8×(-0.52)
		$r = \frac{-23.52}{\sqrt{1268.8 \times 0.868}}$ or $\frac{-23.52}{33.186}$ oe	M1	corr sub into 3 Ss and r , ft Σ s, \overline{x} , \overline{y}	If no workin	g seen:
		=-0.709 (3 sfs)	A1 [4]	cao	-0.71: SC 3;	C
	(ii)	$b = \frac{"-23.52"}{"1268.8"}$ or $-\frac{147}{7930}$ or -0.0185 (3 sfs)	M1	ft their S_{xy} & S_{xx} & Σ s from (i)	use of x on y line:
		$y - \frac{"1366"}{5} = "-0.0185" (x - \frac{"1366"}{5})$	M1	or $a = \frac{"17.6"}{5} - "(-0.0185)" \times $	5	$b' = \frac{"-23.52"}{"0.868"}$ (or -27.1) M0
		$\Rightarrow y = -0.019x + 8.6$ or better, ie 2 sfs enough	A1	if a incorrect, must see cao; must be " $y = \dots$ "	method for M1	$x - \frac{"1366"}{5} = "-27.1" (y - \frac{"17.6"}{5})$
		y = -0.013x + 0.0 of better, ic 2 sis enough	AI	coeffs that round to -0.019 &	8.6 to 2 sfs	or $a' = \frac{"1366"}{5} - "(-27.1)" \times \frac{"17.6"}{5}$) M1
		$(y = -0.019 \times 280 + 8.6 (= 3.39 \text{ to } 3.41))$			0.0 10 2 515	(if d incorrect, must see method for M1)
						x = -27.1y + 369 cao A1
		Est sales = £3390 to £3410		ft their y×1000, dep M1M1, dep sub 28	0 (not 280000)	
		or 3.39 thousand to 3.41 thousand	A1ft	Allow "k" for thousand No working, ans in range: M	1M1A0A1	
			[4]	No working, ans in range. Wi	IMIAOAI	3277 or 3278 A0
	(iii)	There may be other factors oe		or any suggestion of another	factor that	NOT:
				could be involved, eg Depend	ls on state of	Tourists & sales not nec'y linked
				the economy oe		Sales are not entirely dep on tourists Could be a coincidence
		Completion does not involve according	D.I			Might be different other years
		Correlation does not imply causation oe	B1	Must state or clearly imply:		More tourists wd incr sales
				EITHER corr'n does not imply.	ly causation	-0.8 is not strong corr'n
				OR there could be another fac	,	Only shows good neg corr'n
			[1]	in the second se		Sample is small
				Ignore all else		Could be affected by extremes
						Neg corr'n not nec'y imply neg relnship

(Q1, June 2012)

29	(i)	(a)	1	B1 [1]		NOT close to 1
	(i)	(b)	-1	B1 [1]		NOT close to -1
	(ii)		$\Sigma d^{2} \text{ attempted} \qquad (=10)$ $1 - \frac{6 \times \Sigma d^{2}}{4(4^{2} - 1)} \qquad \text{physics}$ $= 0$	M1 andmath A1	if $\Sigma d^2 = 10$, may be implied by next line if $\Sigma d^2 \neq 10$, must see working dep M1 stutor.com Use of $(\Sigma d)^2$ M0M0A0	S_{xx} or $S_{yy} = 30 - \frac{100}{4}$ (= 5) or $S_{xy} = 25 - \frac{100}{4}$ (= 0) M1 $\frac{0}{\sqrt{5 \times 5}}$ M1
	(iii)		No ft from (i)(a), (i)(b) & (ii) ia: Total (or perfect or max or complete)agreement They have the same opinions/ranks/numbers etc They were identical	В1	Identical opinions/views/marks/ranks/ decisions/results/numbers oe Agree on all the ranks	NOT: They agree or Strongly agree They agree most ranks Similar rankings As A's ranks increase so do B's Perfect relnship
			ib: Opposite/reverse opinions/views/marks/ranks/decisions/results oe	B1	Total (or max or complete or perfect) disagreement A's highest is B's lowest oe "Opposite" seen is sufficient	NOT: Don't agree any ranks Disagree or Strongly disagree Disagree on all ranks Perfect neg relnship
			 ii: For r = 0 must state or imply: either NO relationship or similar or indicate BOTH agreement & disagreement or NEITHER agree nor disagree 		No relationship/pattern/link/similarity between opinions/views/marks/ranks/ decisions/results oe opinions/etc not related scoring appears random Neither agree nor disagree oe Both agree & disagree oe Agree for some, disagree for others oe mixed/varied opinions on the ranks	NOT: Different views Don't agree but some rel'nshp Ranks all different No corr'n betw judges' views Don't agree nothing in common at all not much in common completely different orders opinions completely different half way between (a) and (b)
			or <u>DIFFERENT</u> but <u>NOT OPPOSITE</u>	B1	All three parts: Must refer to (or imply) opinions/views/marks/ranks/scores or (dis)agreement, or relationship or pattern oe, NOT just corr'n	Ignore all other

(Q5, June 2012)

30	(i)	$S_{xx} = 8700000 - \frac{7000^2}{6} \qquad (= 533333)$			
		$S_{xy} = 509900 - \frac{7000 \times 456}{6} \qquad (= -22100)$	M1	Correct subst'n in any correct S formula	
		$b = -\frac{"22100"}{"533333"} \text{ or } -\frac{663}{16000} (=-0.0414)$	M1	Correct subst'n in any correct b formula from two correct S formulae	
		$y - \frac{456}{6} = \text{``-0.0414''}(x - \frac{7000}{6})$	M1	ft their b except if using r	or $a = \frac{456}{6} - ("-0.0414") \times \frac{7000}{6}$ oe ft "b"
		y = -0.0414x + 124 (3 sf)	A1 [4]	or $y = -\frac{663}{16000} x + \frac{3979}{32}$ or $y = -0.041x + 124$	Allow $y=-0.04x+124$ if -0.041 seen
	(an)				above
	(ii)	70 to 72	B1 [1]	or 71 per thousand, NOT 71000	No ft from (i) Ignore method
	(iii)	Extrapolation oe	B1	Allow "2400 is beyond graph" } "Not shown on the graph" or "Line drops low, or below 0" } "Outlier" }	"Line only allows for countries poorer than Nigeria" 1 st B1 Allow "Value for Nigeria is –ve 1 st B1
		Corr'n not high or small sample	B1	Poor corr'n oe, or pts not close to line oe 2 nd B1	NOT "Other factors may apply" oe Ignore all else
	(iv)	$S_{xx} = 8700000 + 1300^2 - \frac{(7000 + 1300)^2}{7}$	L#J	or $10390000 - \frac{(8300)^2}{7} = \frac{3840000}{7}$ or 548571	
		$S_{yy} = 36262 + 96^2 - \frac{(456 + 96)^2}{7}$	3.61	or $45478 - \frac{552^2}{7} = \frac{13642}{7}$ or 1948.86	Correct sub in any correct S formula M1 Correct value of any S seen or implied by r A1
		$S_{xy} = 509900 + 1300 \times 96 - \frac{8300 \times 552}{7}$	M1 A1	or $634700 - \frac{8300 \times 552}{7} = -\frac{138700}{7}$ or -19814.3	Correct value of any 5 seem of implied by 7.11
		$r = \frac{\text{"-}19814.3\text{"}}{\sqrt{\text{"548571"}\times\text{"1948.86"}}}$	M1 physic	Correct subst'n in any correct r formula from syconeth stubs in Correct S formulae, ie all correct method	SC If $n = 6$, but otherwise correct allow M1A0M1A0 (ans $r = -0.574$, must see wking)
		=-0.606 (3 sf)	A1 [4]		
	(v)	No effect oe	B1 [1]	Stay the same oe Allow just "No"	Ignore all else

(Q3, Jan 2013)

physicsandmathstutor.com

31	(i)		$\Sigma d^2 = n$ seen or implied	M1		Trial method:
			$1 - \frac{6 \times \text{anything}}{n(n^2 - 1)} = \frac{63}{65}$ or $\frac{6 \times \text{anything}}{n(n^2 - 1)} = \frac{2}{65}$	М1	eg $1 - \frac{6 \times \Sigma d^2}{n(n^2 - 1)}$ or $1 - \frac{6 \times n^2}{n(n^2 - 1)}$ or $1 - \frac{6 \times 1^n}{n(n^2 - 1)}$ or	$\Sigma d^2 = 14 \qquad M1$
			$n(n^2-1)$ $n(n^2-1)$ $n(n^2-1)$	IVII	$n(n^2-1)$ $n(n^2-1)$ $n(n^2-1)$	$1 - \frac{6 \times 14}{14(14^2 - 1)} \text{oe} M1$
					$1 - \frac{6 \times 6^2}{n(n^2 - 1)} = \frac{63}{65}$	$= \frac{63}{65} $ A1 (0.969 : A0)
			$\frac{6}{(n^2-1)} = \frac{2}{65}$ or eg 390 = 2(n ² - 1)	A1 depM2	Any <u>correct</u> eqn after cancelling n or take out factor of n ; can be implied by $n = 14$	$\Rightarrow n = 14$ A1 Conclusion needed
			$n = 14$ NOT $n = \pm 14$	A1	But A0 if $n = 14$ clearly follows from incorrect working	
				[4]	If no working or unclear working, but n = 14, M1M1A1A1	
	(ii)	(a)	$r = 1 \implies$ st line, hence true (or $r_s = 1$) oe	B1	$r = 1 \implies y$ incr as x incr, so $r_s = 1$ oe Allow "True because perfect corr'n" or	NOT " r incr so ranks incr" NOT " $r_s = r$ for ranks so true"
			Explanation essential		"True because $r = 1$ means pts ranked in	NOT "True because strong corr'n"
			Must state or imply "true"		order so $r_s = 1$ "	
					" $r = 1$ means the ranks will agree" " $r = 1$ means all d 's are 0, hence $r_s = 1 - 0 = 1$ "	
				[1]		
	(ii)	(b)	Diag, ≥ 3 pts, not on st line but with $x_{n+1} > x_n$	B1	Ignore explan if correct diag given Ignore any st line drawn	
			& $y_{n+1} > y_n$, Zig zag line or curve, moving up & right		Allow numerical example for which $r \neq 1$ but	
			8 · · · · · · · · · · · · · · · · · · ·		$r_s=1$.	
					If expl'n contradicts diag, mark diag	
			so r_s can still be 1	B1dep [2]	For 2 nd B1 must state or imply "false"	
			eg "expon'l curve gives $r \neq 1$ but $r_s = 1$ " B1B1			